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THE PROBLEM OF THE PRESSURE OF A RI61D STAMP ON THE BOUNDARY OF A 
NON-LINEARLY ELASTIC HALF-PLANE UNDER FINITE DEFORMATIONS" 

L.G. DOBORDZHGINIDZE 

The plane contact problem of non-linear elasticity theory is considered 
for a half-plane of non-linearly elastic material of harmonic type /1/ 
under finite deformations. It is assumed that there is no friction in 
the area of stamp contact with the elastic half-plane. The problem is 
reduced to a non-linear integral equation by using the scheme the author 
proposed earlier /2/. Unlike /2/, where this equation is solved just 
for a flat stamp with a rectilinear horizontal base, an exact solution 
is obtained for an inclined stamp with a flat base as well as for a 
stamp whose base profile is the arc of a cricle or wedge. It is shown 
that the contact pressure is bounded at the stamp edges and at the 
corner point. 

I. Fo~t~on o~ soZwt~ of the ~obZem. The physical domain under consideration is 
the lower half-plane S- of the plane of the variable z = x+ty, and L is the boundary of 
the domain S-. We assume that a rigid stamp presses without friction on a part L, ~ [ab] of 
this boundary. There are no external effects on the remainder of the boundary L 2 = L\L~. 
The stamp is pressed to the boundary by external forces whose principal vector is (0, --N0). 
We will consider the stamp to be displaced transversely only but along the normal to the 
boundary. There are no stresses and rotation at infinity. 

The boundary conditions of the problem have the form /3, 4/ 

X~ = 0 on  L, Y~ = 0 on  L~,v- = / ( x  + u-) + C o n L ,  (1.1) 

where Y~, X~ are components of the true Cauchy stress tensor, u-,~ are boundary values 
of the displacement components ~ and ~, respectively, on L, f is a real function characteriz- 
ing the shape of the stamp base profile: ~'~ H(L,), and O is an arbitrary real constant. 
The boundary conditions and the behaviour of the solution of the problem for the case of 
several stamps are exactly identical to the case for one stamp. 

The mentioned limit value of the horizontal displacement u = u (x)(x* = x~- u) of points 
of the contact domain figure in the last equality of condition (i.i). This function is 
unknown and to be determined when solving the'problem, which is also a considerable difference 
between the problem under investigation and that considered in /2/. 

Let us use complex representations of the fields of the elastic elements in terms of two 
analytic functions ~ (z) and ~ (z) of the complex argument z=x+ ty in the domain S- under 
consideration /2, 3/ 

X~ -~ Yu d- 4~ = (L ÷ 2~) qfl (q) 
V I  ' (1.2) 

yTl__X__2tXy:= 4(L+2~)  fl(q) Oz* Oz* 

• ~L ,~ ~+-~ (V(~) ~+~ [(P{~)~'(~) - ~ ] - - I  (1.:~) 

a~ - ~  ~+2~, ~ '  - ~ = - - ~ + 2 ~  ,~,(z) 

I /7  = as* o~, Oz* o~, 2 I / ~  2 (;~ + ~,) (1.5) 
"az ~ a~ az ' q =  v az az ' C ~ ( q ) = q -  x4~-2~ 

It is proved /3/ that 

z * = z + u + t v  
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~'  (z)=z~:O everywhere in S - - ~  L 

Moreover, for the case under consideration for large [z [ 

( ! (;) 

q} (z) = - -  (7. 4 2~) (X + tY) In z + z 4- o (t) + const (1 7) 
4a,u (k + ,a) 

(~-t2.)(x-~r) [ ~ - l ] l t , : + o 0 ) + ¢ o n s t  (1 s,) 

where (X, Y) is the principal vector of the external forces applied to L,. 
On the basis of (1.2) and (1.4) and the absence of stresses at infinity it follows from 

(l.1) that 
(~ (x) q)"(x) - -  (p,2 (x) ¢ ' (x)  = 0 on L (1 9) 

Taking account of (1.9) we obtain from (1.2)-(1.6) 

Y , , - = N ( x ) =  2rt(X-~t~)[l¢P'Z(x)l--q o n L  
X + ~  +t~l ¢"(z) l 

(1.10) 

Hence, we will have according to the second condition of (i.i) 

[ ~' (x) I = exp F (x) on L,, [ ~' (x) I = | on L, 

Here 

( l . l i )  

F ( x ) =  I [~ 2~+N(x)  -~- ln  - - - -  2(X+t~)--N(x)  ] (1 12) 

Taking account of (1.6) and (1.7) we find from (i.ii) 

F(~)d. /, z ~ S -  (1.t3) q ~ ' ( z ) = e x p ( - -  ~ -~  i x - - z  / 
bt 

We now find the boundary values of ~'(z) on L from 8- and we insert the expression 
obtained into (1.3). Then taking account of (1.9), the last condition in (i.i), and (1.12), 
we obtain the fundamental relationship establishing the non-linear relation between the 
desired functions F (x) and u (x) on L I 

a . N(xo) ~(14-u,(xo))],(xo4-u)] x o ~ L  x (1.14) I F(x) dxz__~o = " T a r c s ' n  [(  1 -  2(~.+~.)/ 
L, 

It can be shown that the expression in the square brackets on the right side of (1.14) 
does not exceed unity in absolute value. 

Indeed, we insert the boundary value of the function (1.13) from S- on L into the 
formula following from (1.3) and (1.9) 

(~4~---~ ~ '+~  i ) p , e ~ , 2 ( x ) _ t  o n L  * u' (x) = 4- x+2t~ Iq~'2(x)l 

and we take account of (1.14) in the expression obtained. We then obtain the relationship 

N(~) I -  I o n  L 1 ( t . 1 5 )  
z O, + tt) (1 + u" (z)) l / t  + / " ( x  + u) 

from which the required estimate follows. 
The equalities (1.12), (1.14) and (1.15) form a system of three functional equations to 

determine the functions F (x), N (x) and u (x) on L,. 
Taking acccount of (1.15) on the right-hand side of (1.14) we obtain 

I F(x) dx n / '  (%*) 
- -  --  - ~ a r c s i n  1" (x°* = x° + u) ( t . t6)  

L, x- -xo  1 / 1 +  (Zo*) 

where the real function / (x0*) characterizes the shape of the stamp base in the deformed 
state. But on the other hand, the expression under the arcsin equals sin ~ (x0*), where ~(~0") 
is the angle that the tangent drawn at the point (x0*, / (x0*)) makes with the positive direction 
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of the real axis. Therefore 

I F (x) dx a 
z -  Zo " = "-~ ct (x°*) = -'2- ct (x° + u) (1 . t 7 )  

L x  

Considering the right-hand side of (1.17) to be known temporarily, we arrive at a homo- 
geneous characteristic singular integral equation to determine the function F (x) on L~. Below 
we shall seek a solution of this equation in the class h0 (i.e., a solution not bounded at 
the ends of the line of integration). The index of this class equals one, and the solution 
itself has the form (without loss of generality we will assume that L,  = [ - - a ; , a ] )  /5/ 

- - a  

where C is a real constant determined from the condition for specifying the principal vector 
of the acting stresses. 

After having determined the function F (x) we find the function ~'(z) from (1.13), 
and we determine the other desired potential ~ (z) from (1.9) by a well-known method. 
According to the function F (x) found the contact pressure distribution under the stamp is 
determined in conformity with (1.12) by the expression 

/~,' (x) = 2~ [exp (2F (x)) - -  t] . 
1 -~- I~ (k -~- I~) -1 exp (2F (x)) 

(~.~9) 

It should be noted that the function ~ (x*) on the right-hand side of (i.17) is generally 
unknown, which complicates the investigation considerably. A case is examined below when 
this obstacle is overcome successfully and the exact solution of the problem is found. 

3. A stamp with a rectilineur horizontal or i~lined base. If the stamp has a rectilinear 
base with angle of inclination ~, then ~ (x*) = ~. Since 

i ] / a  2 - x  zdx gXo 
x - -  x o 

- - a  

we find the solution of class h 0 of Eq.(1.17) from (1.18) in the form 

cx + C (~ + 2,) N o 
F (x) = -2 V ~ ' - ~  C = (2 . t )  ' 4~V. (~ -b P~) 

Here N o is a given positive constant, Y =--No, and the constant C is determined as a 
result of integrating the first equality in (2.1) between -<z and a, comparing the expression 
obtained with the asymptotic value of the right-hand side of (1.13) for large Iz I and taking 
account of (1.7). 

Therefore, the contact pressure under the stamp will be determined by (1.12) and (2.1), 
where the case ~ = 0 corresponds to a stamp with a rectilinear horizontal base. 

Thus, the normal stress distribution has been obtained in the contact domain (including 
the corner points) that contains no singularities. In particular limN(x) =2 (A+ ~) as 
Ix l-~a. Moreover, the distribution obtained depends very much on the elastic properties 
of the material. 

The principal moment of the external forces maintaining the stamp in a given position 
can be evaluated from the formula 

M = - -  i N ( x )  dx 
- a  

3. A s ¢ ~  ~ ¢ h  a recti~iRe~P i ~ g e - s ~ p e d  base. Le t  the  stamp have a wege-shaped base, 
i.e., be a broken line symmetrical about the y axis with apex at the point x = 0. The slope 
of this line equals l u I. It is assumed that finite (corner) points of the stamp (x ~ +a) 
make contact with the elastic half-plane boundaries. We have 

{ - c ~  on [ - - a ;  O[ 
d ( l * )  = 

(z on ] O , a ]  
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Substituting this result into the right-hand side ~f (1.18), we obtain 

" "¢ I 2.rt,u, (k ~ ~t) V a 2 -- x~ 

and according to (1.19) we will have the contact pressure distribution pattern. The contact 
pressure will have the finite value 2(I + ~) at the points a,O,a 

This example yields a definite representation of the process of impressing a cutting 
instrument into an elastic medium. 

4. On the bo~E~d soZ~tions of (1.16). we consider the original Eq.(l.16) and we determine 
the solution of this equation of the class h (--a, a) (i.e., the solution bounded at the 
points --a, a), where it is assumed that F (±a) = 0 Using this latter condition we dif- 
ferentiate (1.16) with respect to x o. We obtain 

I F'tx) dx __ :~ k(xo* ) (4.1) 
. r  - -  x 0 2 C O S  O~ 

- - a  

where , k  (x0*) is the curvature of the contact line at the point x0*, and a is the angle 
made by the tangent to this line at the point (Xo*, /(Xo*)) with the positive direction of 
the real axis. 

We now assume that the stamp is a strip bounded from below by the symmetric arc of a 
circle of radius R and on the side by the vertical lines x = +a Then k (x*) = I/R, where 
R is a sufficiently large quantity. The right side of (4.1) can be replaced by the expression 
~/(2R) with acceptable accuracy, i.e., components of third order of smallness in I/R can 
be neglected. This means we will have 

i F'(w) d~c -t . . . .  '~n (4.2) 
u 

We now seek the solution of this equation of class h,. It has the form /6/ 

F ' ( x )  = A + B ~  

where A and B are real constants. We integrate this equality and take into account the 
symmetry condition of the problem. We then obtain (A = 0) 

F ( x ) = C ~ f a 2 - - x  2, C = ( 2 B ) - *  ( 4 3 )  

The constant C is determined by substituting the first expression in (4.3) into (4.2). 
To determine the real constant a we substitute (4.3) into the right-hand side of (1.13) 

and we compare the asymptotic behaviour of (1.7) and (1.13) for large I z I. We then obtain 

a = {(L + 21 x) BNn, ' [~la (L J r  V)I}V, 

The half-length of the contact section is determined by this formula. 
According to (1.19) and (4.3) the contact pressure under the stamp vanishes at the end 

points of the contact domain. 
Finally, we consider the case when the stamp has a wedge-shaped base with slope Is ] and 

the acting external forces are not sufficient for the stamp corners to come into contact with 
the elastic half-plane boundaries. Therefore, the ends of the contact line (i.e., the points 
- - a ,  a) are not known in advance and must be determined when solving the problem. 

In the case under consideration the function F (x) is determined by the first (logar- 
ithmic) component on the right-hand side of (3.1) and we find the coordinate of the end point 
of the domain in the form 

a = (L + 2[z) No/[2~ (i~ + ia) u l  
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THE CONSTRUCTION OF THE DISSIPATIVE PLASTIC FLOW FUNCTION 
ON THE BASIS OF MICROSCOPIC REPRESENTATIONS u 

V.N. LUKERCHENKO 

A dissipative function (DF) of the plastic flow of a single crystal is 
constructed on the basis of microscopic representations. A thermodynamic 
analysis is performed of the possible mechanical energy dissipation 
mechanism for moving dislocations. The general expression constructed 
for the DF is reduced to a form such that the latter depends only on 
characteristics of the process (strain rates) and macroscopic 
characteristics of the ensemble of dislocations. The physical meaning is 
uncovered here and the value of all the coefficients in the determination 
of the DF is indicated. The deduction is made that the phenomenological 
representation of the DF just as the sum of first and second degree 
homogeneous functions in the plastic strain rates is generally 
non-uniform and the rate of change of the mocrostructure parameters must 
still be taken into account. 

The construction of the dissipative function (DF) 

(where T is the absolute temperature, q' is the uncompensated heat, and t is the time) 
governing the magnitude of entropy growth due to internal irreversible processes is the most 
important element in describing plastic deformation and the construction of new models of 
continuous media /i, 2/. Usually it is postulated phenomenologically that the DF for plastic 
media is a homogeneous (linear or non-linear) function of first degree in the plastic strain 
rates e,; while it is a homogeneous second-degree function in the plastic strain rates or 
the sum of the above-mentioned first and second degree homogeneous functions for viscoplastic 
media /3, 4/. It is impossible to regard such an approach as completely satisfactory for the 
following reasons. 1 ° . It is assumed that the coefficients in the determination of the 
homogeneous functions can be determined experimentally. As a rule, however, the appropriate 
experimental data have a large spread. 2 °. The coefficients mentioned are not determined 
from physical representation, i.e., on the basis of the material microstructural character- 
istics, whereupon their physical meaning is also not clear. 3 ° . It is also not known whether 
a DF of a plastic medium with dislocationscanbe constructed just like a homogeneous function 
(or the sum of homogeneous functions) in the plastic strain rates without taking account of 
the microstructural parameters of the plastic flow and their rate of change. 

The DF was introduced in the form of the general expression (/5-7/, et al.) 

= • (~ , / ,  T , ~ , ~ ' )  

when taking account of the internal parameters and their rates of change, where ~ is an 
internal parameter. However, the form of the DF is not made specific here and the proposed 
models were not properly microscopic. 
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